跨境派

跨境派

跨境派,专注跨境行业新闻资讯、跨境电商知识分享!

当前位置:首页 > 平台政策 > llama_factory微调QWen1.5

llama_factory微调QWen1.5

时间:2024-04-30 13:45:39 来源:网络cs 作者:康由 栏目:平台政策 阅读:

标签:
阅读本书更多章节>>>>

GitHub - hiyouga/LLaMA-Factory: Unify Efficient Fine-Tuning of 100+ LLMsUnify Efficient Fine-Tuning of 100+ LLMs. Contribute to hiyouga/LLaMA-Factory development by creating an account on GitHub.icon-default.png?t=N7T8https://github.com/hiyouga/LLaMA-FactoryQwen1.5 介绍 | QwenGITHUB HUGGING FACE MODELSCOPE DEMO WeChat简介 最近几个月,我们专注探索如何构建一个真正「卓越」的模型,并在此过程中不断提升开发者的使用体验。农历新年到来之际,我们推出通义千问开源模型1.5版本: Qwen1.5。我们开源了包括0.5B、1.8B、4B、7B、14B和72B共计6个不同规模的Base和Chat模型,, 以及一个MoE模型(点击博客 了解详情),并同步放出了各尺寸模型对应的量化模型。此次更新中,我们不仅像之前一样提供Int4和Int8的GPTQ模型,还提供了AWQ以及GGUF量化模型。为了提升开发者体验,我们将Qwen1.5的代码正式合并到HuggingFace transformers代码库中,所以现在可以直接使用 transformers>=4.37.0 原生代码,而无需指定 trust_remote_code 选项即可进行开发。我们已经与vLLM、SGLang(用于部署)、AutoAWQ、AutoGPTQ(用于量化)、Axolotl、LLaMA-Factory(用于微调)以及llama.cpp(用于本地 LLM 推理)等框架合作,所有这些框架现在都支持 Qwen1.5。Qwen1.5 系列可在 Ollama 和 LMStudio 等平台上使用。此外,API 服务不仅在 DashScope 上提供,还在 together.ai 上提供,全球都可访问。请访问here开始使用,我们建议您试用Qwen1.5-72B-chat。相较于以往版本,本次更新我们着重提升Chat模型与人类偏好的对齐程度,并且显著增强了模型的多语言处理能力。在序列长度方面,所有规模模型均已实现 32768 个 tokens 的上下文长度范围支持。同时,预训练 Base 模型的质量也有关键优化,有望在微调过程中为您带来更佳体验。这次迭代是我们朝向「卓越」模型目标所迈进一个坚实的步伐。模型效果 为了全面洞悉 Qwen1.5 的效果表现,我们对 Base 和 Chat 模型在一系列基础及扩展能力上进行了详尽评估,包括如语言理解、代码、推理等在内的基础能力,多语言能力,人类偏好对齐能力,智能体能力,检索增强生成能力(RAG)等。基础能力 关于模型基础能力的评测,我们在 MMLU(5-shot)、C-Eval、Humaneval、GS8K、BBH 等基准数据集上对 Qwen1.5 进行了评估。Model MMLU C-Eval GSM8K MATH HumanEval MBPP BBH CMMLU GPT-4 86.4 69.9 92.0 45.8 67.0 61.8 86.7 71.0 Llama2-7B 46.icon-default.png?t=N7T8https://qwenlm.github.io/zh/blog/qwen1.5/

我在4卡1080ti上用lora微调的,1.8B用deepspeed的4卡,bs=1还是会爆显存,因此最终采用了0.5B的版本来训练。

1.数据

新定义的数据格式要在dataset_info.json中,通常我们定义的都是alpaca的格式:

    {        "instruction": "三原色是什么?",        "input": "",        "output": "三原色通常指的是红色、绿色和蓝色(RGB)。它们是通过加色混合原理创建色彩的三种基础颜色。在以发光为基础的显示设备中(如电视、计算机显示器、智能手机和平板电脑显示屏), 三原色可混合产生大量色彩。其中红色和绿色可以混合生成黄色,红色和蓝色可以混合生成品红色,蓝色和绿色可以混合生成青色。当红色、绿色和蓝色按相等比例混合时,可以产生白色或灰色。\n\n此外,在印刷和绘画中,三原色指的是以颜料为基础的红、黄和蓝颜色(RYB)。这三种颜色用以通过减色混合原理来创建色彩。不过,三原色的具体定义并不唯一,不同的颜色系统可能会采用不同的三原色。"    }

在dataset_info.json中注册:

  "alpaca_gpt4_data_zh_retained": {    "file_name": "alpaca_gpt4_data_zh.json",    "file_sha1": ""  },  "sft_gpt4_livestreaming_data_20240105": {    "file_name": "sft_gpt4_data.json",    "file_sha1": ""  }

数据包括:alpaca的通用数据,直播带货文案,商品主题词抽取,场景问答,选择题,客服问答,标题扩展,商品介绍seo,写文章,短标题抽取,小红书文案,根据参数扩写,文章总结,人设。

2.训练

在examples中有很多示例:

qwen1.5-1.8b-sft:

#!/bin/bashdeepspeed --num_gpus 4 ../../src/train_bash.py \    --deepspeed ../deepspeed/ds_z3_config.json \    --stage sft \    --do_train \    --model_name_or_path /root/e_commerce_llm/weights/Qwen1.5-0.5B/ \    --dataset alpaca_gpt4_data_zh,sft_gpt4_data \    --dataset_dir ../../data \    --template qwen \    --finetuning_type lora \    --lora_target q_proj,v_proj  \    --output_dir ../../saves/Qwen1.5_0.5B_Base/lora/sft \    --overwrite_cache \    --overwrite_output_dir \    --cutoff_len 1024 \    --preprocessing_num_workers 16 \    --per_device_train_batch_size 1 \    --per_device_eval_batch_size 1 \    --gradient_accumulation_steps 2 \    --lr_scheduler_type cosine \    --logging_steps 10 \    --warmup_steps 20 \    --save_steps 100 \    --eval_steps 100 \    --evaluation_strategy steps \    --learning_rate 5e-5 \    --num_train_epochs 3.0 \    --max_samples 3000 \    --val_size 0.1 \    --ddp_timeout 180000000 \    --plot_loss

1080ti不支持fp16,去掉了。

3.lora合并

#!/bin/bash# DO NOT use quantized model or quantization_bit when merging lora weightsCUDA_VISIBLE_DEVICES=0 python ../../src/export_model.py \    --model_name_or_path /root/lgd/e_commerce_llm/weights/Qwen1.5-0.5B/ \    --adapter_name_or_path /root/lgd/e_commerce_llm/llama_factory/saves/Qwen1.5_0.5B_Base/lora/sft/ \    --template qwen \    --finetuning_type lora \    --export_dir ../../models/qwen1.5_0.5B_base_sft \    --export_size 2 \    --export_legacy_format False

4.前向推理

inference下的sh

#!/bin/bashCUDA_VISIBLE_DEVICES=0 python ../../src/cli_demo.py \    --model_name_or_path /root/lgd/e_commerce_llm/weights/Qwen1.5-0.5B/ \    --adapter_name_or_path /root/lgd/e_commerce_llm/llama_factory/saves/Qwen1.5_0.5B_Base/lora/sft/ \    --template qwen \    --finetuning_type lora

5.结论

我在自己的数据集上用lora微调了qwen-0.5B-Base和qwen-0.5B-Chat:

5.1 效果都不太好;

5.2 base版本出现过很多和提问无关的内容;

5.3 就人格注入来讲,chat一点都注入不进去,但base版本好很多;

5.4 推理显存占用1080ti没问题;

5.5 base版本会不断重复内容;

5.6 chat版本也会不断重复内容;

感觉微调之后chat版本还差一点。

阅读本书更多章节>>>>

本文链接:https://www.kjpai.cn/zhengce/2024-04-30/163737.html,文章来源:网络cs,作者:康由,版权归作者所有,如需转载请注明来源和作者,否则将追究法律责任!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

文章评论