跨境派

跨境派

跨境派,专注跨境行业新闻资讯、跨境电商知识分享!

当前位置:首页 > 综合服务 > 培训机构 > 基于 GADF+Swin-CNN-GAM 的高创新轴承故障诊断模型!

基于 GADF+Swin-CNN-GAM 的高创新轴承故障诊断模型!

时间:2024-05-03 18:20:45 来源:网络cs 作者:璐璐 栏目:培训机构 阅读:

标签: 轴承  故障  诊断  模型  创新 

环境:python 3.9  pytorch 1.8 及其以上都可以

模型创新点还未发表,有毕业设计或者发小论文需求的同学必看,模块丰富,创新度高,性能优越!

创新点:

(1)通过格拉姆矩阵GADF把一维时序故障信号转化为二维图像;

(2)分支一:图像数据通过顶会模型 Swin Transformer 的窗口注意力机制提取故障图像局部特征;

(3)分支二:同时故障图数据像通过基于全局注意力机制 GAM-Attention 的 CNN2d 卷积池化网络;

(4)然后两个分支提取的全局空间特征和局部特征通过融合后进行自适应平均池化,使模型能够更好地融合不同层次的特征表示,提高模型性能和泛化能力。

(独家原创)

注意:此次产品,我们还有配套的模型讲解(方便学习网络结构)和参数调节讲解,进行详细的解释!

我们还提供关于一维时序信号的 格拉姆矩阵GAF、连续小波变换CWT、短时傅里叶变换STFT等相关时频图像的分类处理方法,提供更改数据集接口,可一键替换信号数据和不同图像的变换处理,来进行此创新模型的实验验证!

一维故障信号数据

格拉姆矩阵GAF变换二维图像数据

电能质量扰动信号GAF变换二维图像数据

连续小波变换CWT时频图数据

短时傅里叶变换STFT时频图数据

 基于GADF+Swin-CNN-GAM的分类网络模型

设置参数,训练模型

50个epoch,准确率近100%,用GADF+Swin-CNN-GAM网络分类效果显著,创新模型能够充分提取轴承故障信号的全局空间和局部特征,收敛速度快,性能优越,精度高,效果明显!

模型评估

准确率、精确率、召回率、F1 Score

故障十分类混淆矩阵:

代码、数据如下:

对数据集和代码感兴趣的,可以关注最后一行

# 加载数据import torchfrom joblib import dump, loadimport torch.utils.data as Dataimport numpy as npimport pandas as pdimport torchimport torch.nn as nn# 参数与配置torch.manual_seed(100)  # 设置随机种子,以使实验结果具有可重复性device = torch.device("cuda" if torch.cuda.is_available() else "cpu") #代码和数据集:https://mbd.pub/o/bread/mbd-ZZ2VmJtt

本文链接:https://www.kjpai.cn/news/2024-05-03/164555.html,文章来源:网络cs,作者:璐璐,版权归作者所有,如需转载请注明来源和作者,否则将追究法律责任!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

文章评论