跨境派

跨境派

跨境派,专注跨境行业新闻资讯、跨境电商知识分享!

当前位置:首页 > 工具系统 > 其他工具 > 信号与系统-离散序列的绘制与卷积(matlab实现)-一个作业的记录

信号与系统-离散序列的绘制与卷积(matlab实现)-一个作业的记录

时间:2024-04-23 18:20:38 来源:网络cs 作者:晨起 栏目:其他工具 阅读:

标签: 实现  作业  记录  离散  系统  序列  绘制  信号 

一、实验内容

二、实验目的

熟练知晓离散序列的表示方法并能利用matlab绘制出离散序列的图像掌握离散序列的基本运算(如加法、乘法、平移、反褶等)并能成功编写对应matlab函数掌握有限离散序列的卷积运算并能够利用matlab编写卷积函数

三、实验原理

题目一

首先表示出离散信号x(n),对于y(n)可将其拆解为两个信号0.2x(5-n)和0.3x(n)x(n-3)相加,然后分别表示出这两个分量,进行相加。

对于x(5-n),首先可以利用翻转函数实现信号的翻转得到x(-n),x(5-n)也即x(-(n-5)),x(-n)图像上方向右平移5个单位得到,可通过将坐标轴向左平移5

个单位达到即让n变为n+5。

得到x(n-3)的方式可类比x(5-n),对x(n)与x(n-3)相乘即可得到第二个分量。

题目二

手写卷积函数的实现,我采用的是对位相乘相加法。

对位相乘相加法原理:

首先将两序列排成两行,其将其各自n最大的序列值对齐(即按右端对齐),然后作乘法运算,但是不要进位,最后将同一列的乘积值相加即得到卷积和结果。

当利用程序实现时,考虑用矩阵存储每一位的乘积,最后进行矩阵的列求和。由于卷积的最终序列长度为length(x)+length(h)-1,所以将此作为矩阵的列数,由对位相乘相加法原理知,矩阵的每一行为分别为h(n)的每一位与x(n)所有相乘的结果,因此矩阵的行数为length(h)。

四、实验结果与分析

(一)离散序列的表示即图像绘制

(1)代码 

离散序列图像绘制脚本(Discrete_Signal.m)

clearn=-2:10;x=[1:7,6:-1:1];[x1,n1]=sigfliplr(x,n);x1=0.2*x1;[x2,n2]=sigmult(x,n,x,n+3);x2=0.3*x2;[y,n]=sigadd(x1,n1+5,x2,n2);figurestem(n,y);title('y(n)');

以下为上述代码中使用的函数的代码:

信号翻转(sigfiplr,m)

function [y,n]=sigfliplr(x,m)y=fliplr(x);n=-fliplr(m);end

信号相乘   (sigmult.m)

function [y,n]=sigmult(x1,n1,x2,n2)n=min(min(n1),min(n2)):max(max(n1),max(n2));y1=zeros(1,length(n));y2=y1;y1(find(n>=min(n1)&n<=max(n1)))=x1;y2(find(n>=min(n2)&n<=max(n2)))=x2;y=y1.*y2;End

信号相加(sigadd.m)

function [y,n]=sigadd(x1,n1,x2,n2)n=min(min(n1),min(n2)):max(max(n1),max(n2));y1=zeros(1,length(n));y2=y1;y1(find((n>=min(n1))&(n<=max(n1)==1)))=x1;y2(find((n>=min(n2))&(n<=max(n2)==1)))=x2;y=y1+y2;end         

          

(2)结果

(二)卷积函数的编写与验证

(1)代码

卷积函数my_conv:

function [y,ny]=my_conv(x,nx,h,nh)nyb=nx(1)+nh(1);nye=nx(length(x))+nh(length(h));ny=nyb:nye;ly=length(ny);A=zeros(length(h),ly);for i=1:length(h)for j=i:length(x)+i-1A(i,j)=h(1,i).*x(1,j-i+1);endendy=sum(A,1);end

验证(Conv_verify):

clearnx=0:6;nh=-3:4;x=0.5*nx.*(stepseq(0,0,6)-stepseq(6,0,6));figurestem(nx,x);title('x(n)');h=2*sin(0.5*nh*pi).*(stepseq(-3,-3,4)-stepseq(4,-3,4));figurestem(nh,h);title('h(n)');[y,ny]=my_conv(x,nx,h,nh);figurestem(ny,y);title('y(n)-myconv');[yc,nyc]=conv_m(x,nx,h,nh);figurestem(nyc,yc);title('y(n)-standard');

其中,验证使用matlab自带的卷积函数进行对照,此函数包含在conv_m中,如下:

function [y,ny]=conv_m(x,nx,h,nh)nyb=nx(1)+nh(1);nye=nx(length(x))+nh(length(h));ny=[nyb:nye];y=conv(x,h);end

(2)结果

X(n)的图像

 h(n)的图像

自己编写的卷积函数绘制的y(n)图像

采用标准卷积函数绘制的y(n)图像

五、总结(实验中遇到的问题、取得的经验、感想等)

此处略

本文链接:https://www.kjpai.cn/news/2024-04-23/161589.html,文章来源:网络cs,作者:晨起,版权归作者所有,如需转载请注明来源和作者,否则将追究法律责任!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

文章评论