跨境派

跨境派

跨境派,专注跨境行业新闻资讯、跨境电商知识分享!

当前位置:首页 > 工具系统 > 选词工具 > AI大模型智能大气科学探索之:ChatGPT在大气科学领域建模、数据分析、可视化与资源评估中的高效应用及论文写作

AI大模型智能大气科学探索之:ChatGPT在大气科学领域建模、数据分析、可视化与资源评估中的高效应用及论文写作

时间:2024-04-10 21:40:37 来源:网络cs 作者:璐璐 栏目:选词工具 阅读:

标签: 科学  资源  效应  论文  写作  数据  模型  分析  领域 

本文深度探讨人工智能在大气科学中的应用,特别是如何结合最新AI模型与Python技术处理和分析气候数据。课程介绍包括GPT-4等先进AI工具,旨在帮助大家掌握这些工具的功能及应用范围。本文内容覆盖使用GPT处理数据、生成论文摘要、文献综述、技术方法分析等案例,使学员能够将AI技术广泛应用于科研工作。特别关注将GPT与Python结合应用于遥感降水数据处理、ERA5大气再分析数据的统计分析、干旱监测及风能和太阳能资源评估等大气科学关键场景。提升参与者在数据分析、趋势预测和资源评估等方面的能力,激发创新思维,并通过实践深化对AI在气象数据分析中应用的理解。

1、掌握AI工具应用:熟练掌握如GPT-4等前沿AI工具在大气科学中的应用,包括数据获取、处理和分析。

2、提高编程技能:通过GPT的实践操作,提升使用Python编程技术处理气象数据的能力,包括使用相关库(如xarray、pandas)进行数据分析和可视化。

3、增强数据分析能力:培养能够独立进行气候数据的趋势分析、干旱监测、风能与太阳能资源评估等复杂数据分析,使其能够识别和解释气候变化模式。

专题一、AI领域常见工具

1.OpenAI模型-GPT-4

2.谷歌新模型-Gemini

3.Meta新模型-LLama

4.科大讯飞-星火认知

5.百度-文心一言

6.MoonshotAI-Kimi

专题二POE平台及ChatGPT使用方法

1.POE使用方法

2.ChatGPT使用方法

专题三、提示词工程

1.提示词工程介绍

2.提示词工程讲解

3.提示词常见模板

专题四、科研常见应用场景

1.把GPT当作搜索引擎

2.把GPT当作翻译软件

3.把GPT当作润色工具

4.用GPT提取整理文章数据

5.用GPT数据处理

专题五、Python简明教程

1.Python基本语法

2.Numpy使用

3.Pandas使用

4.Xarray使用

5.Matplotlib使用

专题六、GPT科研绘图

1.通过GPT绘制常见统计图

2.通过GPT绘制风场图、风羽图、风矢图、流线图

3.通过GPT绘制双Y轴

4.通过GPT绘制区位图

5.通过GPT绘制填充图

6.通过GPT绘制添加子图

7.通过GPT绘制期刊常见图

专题七、GPT辅助下载数据

1.使用GPT生成PERSIAN/GSMaP数据的下载代码。

2.使用GPT生成代码下载GSOD数据

3.使用GPT生成代码下下载NCEP/NCAR再分析数据

4.使用GPT生成代码下载GFS预报数据

专题八、遥感降水数据

1.使用GPT将PERSSIAN/GSMaP数据转化为netCDF格式

2.使用GPT计算PERSSIAN/GSMaP数据趋势并可视化空间分布图

专题九、数据产品评估

1.使用GPT生成常见统计评估指标

2.生成统计指标空间图

3.生成泰勒图

4.生成卫星降雨散点密度图

专题十、ERA5全球大气再分析数据

1.多时间尺度统计

2.干旱监测

1)计算标准化降水蒸散指数(SPEI)或标准化降水指数(SPI)作为干旱监测的指标。

2)根据土壤湿度和降水量数据,使用时间序列分析和阈值判断来评估干旱风险等级。

3.极端指数计算

1)使用GPT生成python针对连续干旱天数计算代码

4.趋势分析

1)滑动平均

2)累积距平

3)使用GPT生成趋势分析代码(Mann-Kendall)。

4)使用GPT生成时间序列分析代码(如傅里叶变换或小波分析)

专题十一、站点数据常规分析

使用GPT处理/生成相应代码:

1)使用GPT数据读取数据

2)使用GPT清洗数据

3)使用GPT生成计算描述性统计量代码

4)使用GPT生成方差分析

5)使用GPT生成卡方检验

6)使用GPT生成相关分析

7)使用GPT生成回归分析

8)绘制气温曲线和风玫瑰

专题十二、站点数据突变检验

使用GPT处理/生成相应代码:

1)基于统计阈值的异常检测

2)时间序列的突变点检测(MK、Pettitt、BUT、SNHT、BG突变点检测)

3)基于机器学习的异常检测(Isolation Forest)

4)多变量数据的异常检测

专题十三、站点数据时间分析

使用GPT处理/生成相应代码:

1)不同时间尺度上的统计

2)周期分析

3)使用GPT生成EMD分析代码

专题十四、CMIP6未来气候情景数据

使用GPT生成Python的处理代码实现下述目标:

1.数据预处理:

1)使用NetCDF工具(xarray)读取数据

2)裁剪时间范围和空间范围

2.计算区域平均温度:

1)对于全球平均温度加权平均

2)对于特定区域,直接计算平均值

3.趋势分析:

1)使用统计方法(如线性回归)分析温度随时间的变化趋势

4.可视化:

1)绘制时间序列图显示温度趋势

2)使用地图可视化工具(basemap)展示空间分布的变化

专题十五、风能资源评估

1.用GPT生成代码计算研究区域内多年的平均风速

2.用GPT生成代码计算风速的季节性变化和年际变异性

3.使用GPT分析结果

专题十六、太阳能资源评估

用GPT生产代码计算每天平均太阳辐射量,分析日、月和季节性的变化趋势

专题十七、气象数据的空间化场景

使用GPT辅助完成外推代码

1.克里格插值

2.临近点插值

3.反距插值

专题十八、气象数据插补场景

使用GPT辅助完成外推代码

1)观测数据填补

2)空间内插法

3)统计填补

专题十九、WRF模式场景

1.使用GPT生成WRF配置文件

2.使用GPT生成生成能见度计算代码

3.使用GPT生成垂直高度变量插值代码

专题二十、GPT写作

1.使用GPT分析结果

2.用GPT生成论文摘要

3.用GPT生成文献综述

4.用GPT分析论文技术方法

5.用GPT分析代码

6.用GPT分析论文公式

7.用GPT识别图片并分析

8.DIY:上传本地PDF资料

1)用GPT分析相关资料中提出问题

2)用GPT总结评价(评阅、审稿意见)

原文链接:

https://mp.weixin.qq.com/s?__biz=MzUyNzczMTI4Mg==&mid=2247682935&idx=4&sn=7ebd8d64c73e19dbea63b74977ccd774&chksm=fa77544acd00dd5c7d196e8c317fd25b42933b6404e4698b20dedeff7cae3433b91457e0220b&token=1502486863&lang=zh_CN#rd

本文链接:https://www.kjpai.cn/news/2024-04-10/156779.html,文章来源:网络cs,作者:璐璐,版权归作者所有,如需转载请注明来源和作者,否则将追究法律责任!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

文章评论