跨境派

跨境派

跨境派,专注跨境行业新闻资讯、跨境电商知识分享!

当前位置:首页 > 工具系统 > 其他工具 > 深度学习 | 基于 CPU 的 tensorflow + keras + python 版本对照及环境安装

深度学习 | 基于 CPU 的 tensorflow + keras + python 版本对照及环境安装

时间:2024-03-28 07:05:31 来源:网络cs 作者:纳雷武 栏目:其他工具 阅读:

标签: 版本  对照  安装  环境  学习  深度 

Hi,大家好,我是源于花海。要让一个基于 CPU 的 tensorflow 和 keras 开发的深度学习模型正确运行起来,配置环境是个重要的问题,本文介绍了 tensorflowkeras 和对应的 python 版本以及安装环境的部分流程。


目录

一、tensorflow + keras + python 版本对照

二、tensorflow 和 keras 安装流程


一、tensorflow + keras + python 版本对照

详情看 tensorflow 官网链接如下:

​​​​​​Build from source on Windows  |  TensorFlow (google.cn)

FrameworkPython versionDescription
TensorFlow 2.93.7.-3.10.TensorFlow 2.9.0 + Keras
TensorFlow 2.83.7.-3.10.TensorFlow 2.8.0 + Keras
TensorFlow 2.73.7.-3.9.TensorFlow 2.7.0 + Keras
TensorFlow 2.63.6.-3.9.TensorFlow 2.6.0 + Keras 2.6.0
TensorFlow 2.53.6.-3.9.TensorFlow 2.5.0 + Keras 2.5
TensorFlow 2.43.6.-3.8.TensorFlow 2.4.0 + Keras 2.4.3
TensorFlow 2.33.5.-3.8.TensorFlow 2.3.0 + Keras 2.4.3
TensorFlow 2.23.7.TensorFlow 2.2.0 + Keras 2.3.1
TensorFlow 2.13.6.TensorFlow 2.1.0 + Keras 2.3.1
TensorFlow 2.03.6.TensorFlow 2.0.0 + Keras 2.3.1
TensorFlow 1.153.6.TensorFlow 1.15.0 + Keras 2.3.1
TensorFlow 1.143.6.TensorFlow 1.14.0 + Keras 2.2.5
TensorFlow 1.133.6.TensorFlow 1.13.0 + Keras 2.2.4
TensorFlow 1.123.6.TensorFlow 1.12.0 + Keras 2.2.4
2.TensorFlow 1.12.0 + Keras 2.2.4
TensorFlow 1.113.6.TensorFlow 1.11.0 + Keras 2.2.4
2.TensorFlow 1.11.0 + Keras 2.2.4
TensorFlow 1.103.6.TensorFlow 1.10.0 + Keras 2.2.0
2.TensorFlow 1.10.0 + Keras 2.2.0
TensorFlow 1.93.6.TensorFlow 1.9.0 + Keras 2.2.0
2.TensorFlow 1.9.0 + Keras 2.2.0
TensorFlow 1.83.6.TensorFlow 1.8.0 + Keras 2.1.6
2.TensorFlow 1.8.0 + Keras 2.1.6
TensorFlow 1.73.6.TensorFlow 1.7.0 + Keras 2.1.6
2.TensorFlow 1.7.0 + Keras 2.1.6
TensorFlow 1.53.6.TensorFlow 1.5.0 + Keras 2.1.6
2.TensorFlow 1.5.0 + Keras 2.0.8
TensorFlow 1.43.6.TensorFlow 1.4.0 + Keras 2.0.8
2.TensorFlow 1.4.0 + Keras 2.0.8
TensorFlow 1.33.6.TensorFlow 1.3.0 + Keras 2.0.6
2.TensorFlow 1.3.0 + Keras 2.0.6

二、tensorflow 和 keras 安装流程

这里安装 python=3.8,tensorflow=2.4.0,keras=2.4.3(segnet 是我做的语义分割项目的虚拟环境)若需要将创建的虚拟环境添加到 jupyter lab/notebook 中使用,则需要第 3 - 6 步,否则不用

# 1. Anaconda 创建虚拟环境conda create -n segnet python=3.8# 2. 激活并进入虚拟环境activate segnet# 3. 安装 ipykernel pip install ipykernel -i https://pypi.tuna.tsinghua.edu.cn/simple/# 4. 安装ipykernel,将虚拟环境加入 jupyter 内核中python -m ipykernel install --name segnet --display-name segnet# 5. 检查新虚拟环境是否成功加入内核jupyter kernelspec list# 6. 从指定文件夹里进入 jupyterjupyter lab# 7. 安装 tensorflow、keras 等软件包pip install tensorflow=2.4.0 -i https://pypi.tuna.tsinghua.edu.cn/simplepip install keras=2.4.3 -i https://pypi.tuna.tsinghua.edu.cn/simple------------------------------------------------------------------------pip install matplotlib=3.4.3 -i https://pypi.tuna.tsinghua.edu.cn/simplepip install numpy=1.19.2 -i https://pypi.tuna.tsinghua.edu.cn/simplepip install pillow=10.2.0 -i https://pypi.tuna.tsinghua.edu.cn/simplepip install scipy=1.7.3 -i https://pypi.tuna.tsinghua.edu.cn/simple

本文链接:https://www.kjpai.cn/news/2024-03-28/149806.html,文章来源:网络cs,作者:纳雷武,版权归作者所有,如需转载请注明来源和作者,否则将追究法律责任!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

文章评论