跨境派

跨境派

跨境派,专注跨境行业新闻资讯、跨境电商知识分享!

当前位置:首页 > 卖家故事 > 使用 FastGPT 构建高质量 AI 知识库

使用 FastGPT 构建高质量 AI 知识库

时间:2024-05-04 16:40:38 来源:网络cs 作者:纳雷武 栏目:卖家故事 阅读:

标签: 知识  质量  使用 
阅读本书更多章节>>>>

❝ 作者:余金隆。FastGPT 项目作者,Sealos 项目前端负责人,前 Shopee 前端开发工程师

FastGPT 项目地址:https://github.com/labring/FastGPT

引言

自从去年 12 月 ChatGPT 发布以来,带动了一轮新的交互应用革命。尤其在 GPT-3.5 接口全面开放后,大量的 LLM 应用如雨后春笋般涌现。然而,由于 GPT 的可控性、随机性和合规性等问题,很多应用场景都没法落地。

起源

3 月份,我在 Twitter 上刷到一个老哥使用 GPT 训练他自己的博客记录,成本极低(相比于 Fine-tuning)。他提供了一个完整的流程图:

file

向量搜索 GPT 流程图 看到这个推文后,我灵机一动,应用场景就十分清晰了。直接上手开干,不到一个月的时间,我在原有的助手管理基础上,为 FastGPT 加入了向量搜索功能。于是就有了最早的一期视频:https://www.bilibili.com/video/BV1Wo4y1p7i1/

初步发展

三个月过去了,FastGPT 依然延续着早期的思路去完善和扩展。目前,其在向量搜索 + LLM 线性问答方面的功能基本已完成。然而,我们始终没有发布关于如何构建知识库的教程。因此,我们打算在 V4 版本开发过程中,写一篇文章来介绍《如何在 FastGPT 上构建高质量知识库》。

FastGPT 的知识库逻辑

在正式开始构建知识库之前,我们需要了解 FastGPT 的知识库检索机制。首先,我们需要了解几个基本概念:

基础概念

1. 向量:将人类的语言(文字、图片、视频等)转换为计算机可识别的语言(数组)。

2. 向量相似度:计算两个向量之间的相似度,表示两种语言的相似程度。

3. 语言大模型的特性:上下文理解、总结和推理。

这三个概念结合起来,就构成了 "向量搜索 + 大模型 = 知识库问答" 的公式。以下是 FastGPT V3 中知识库问答功能的完整逻辑:

file

向量搜索 GPT 流程图 FastGPT 与大多数其他知识库问答产品不同的地方在于,它采用了 QA 问答对进行存储,而不仅是 chunk(文本分块)处理。这样做是为了减少向量化内容的长度,使向量能更好地表达文本的含义,从而提高搜索的精度。

此外 FastGPT 还提供了搜索测试和对话测试两种途径对数据进行调整,从而方便用户调整自己的数据。

根据上述流程和方式,我们以构建一个 FastGPT 常见问题机器人为例,展示如何构建一个高质量的 AI 知识库。

*❝ FastGPT 仓库地址:https://github.com/labring/FastGPT *

创建知识库应用

首先,我们创建一个 FastGPT 常见问题知识库。

file

基础知识获取

我们先直接把 FastGPT GitHub 仓库上一些已有文档,进行 QA 拆分,从而获取一些 FastGPT 的基础知识。下面以 README 为例。

file

QA 拆分示意图

file

示例

QA 修正

我们从 README 中获取了 11 组数据,整体质量还是不错的,图片和链接都提取出来了。然而,最后一个知识点出现了一些截断,我们需要手动修正一下。

此外,我们注意到第一列第三个知识点,该知识点介绍了 FastGPT 的一些资源链接,但 QA 拆分将答案放在了 A 中。然而,用户的问题通常不会直接问“有哪些链接”,他们更可能会问:“部署教程”,“问题文档”等。因此,我们需要对此知识点进行简单处理,如下图所示:

file

手动修改知识库数据

接下来,我们可以创建一个应用,看看效果如何。首先创建一个应用,并在知识库中关联相关的知识库。另外,还需要在配置页面的提示词中,告诉 GPT:“知识库的范围”。

file

应用创建

file

README QA 拆分后效果

导入社区常见问题

接着,我们把 FastGPT 常见问题的文档导入。由于之前的整理不到位,我们只能手动录入对应的问答。

file

手动录入知识库结果

导入结果如上图。可以看到,我们均采用的是问答对的格式,而不是粗略的直接导入。目的就是为了模拟用户问题,进一步的提高向量搜索的匹配效果。可以为同一个问题设置多种问法,效果更佳。

FastGPT 还提供了 OpenAPI 功能,你可以在本地对特殊格式的文件进行处理后,再上传到 FastGPT,具体可以参考:sourl.cn/mNnS9v

知识库微调和参数调整

FastGPT 提供了搜索测试和对话测试两个功能,我们可以通过这两个功能来进行知识库微调和参数调整。

我们建议你提前收集一些用户问题进行测试,根据预期效果进行跳转。可以先进行搜索测试调整,判断知识点是否合理。

搜索测试

通过搜索测试,我们可以输入问题,查看返回的知识库数据,来测试知识库的查询效果。下面是搜索测试的界面:

file

搜索测试界面

我们可以看到,系统返回了与之相关的问答数据。

你可能会遇到下面这种情况,由于“知识库”这个关键词导致一些无关内容的相似度也被搜索进去,此时就需要给第四条记录也增加一个“知识库”关键词,从而去提高它的相似度。

file

file

提示词设置

提示词的作用是引导模型对话的方向。在设置提示词时,遵守 2 个原则:

告诉 GPT 回答什么方面内容。

给知识库一个基本描述,从而让 GPT 更好的判断用户的问题是否属于知识库范围。

file

提示词设置

更好的限定模型聊天范围

首先,你可以通过调整知识库搜索时的相似度和最大搜索数量,实现从知识库层面限制聊天范围。通常我们可以设置相似度为 0.82,并设置空搜索回复内容。这意味着,如果用户的问题无法在知识库中匹配时,会直接回复预设的内容。

file

搜索参数设置

file

空搜索控制效果

由于 OpenAI 向量模型并不是针对中文,所以当问题中有一些知识库内容的关键词时,相似度 会较高,此时无法从知识库层面进行限定。需要通过限定词进行调整,例如:

❝ 我的问题如果不是关于 FastGPT 的,请直接回复:“我不确定”。你仅需要回答知识库中的内容,不在其中的内容,不需要回答。

效果如下:

file

限定词效果 当然,GPT-3.5 在一定情况下依然是不可控的。

通过对话调整知识库

与搜索测试类似,你可以直接在对话页里,点击“引用”,来随时修改知识库内容。

file

查看答案引用

结语

向量搜索是一种可以比较文本相似度的技术。

大模型具有总结和推理能力,可以从给定的文本中回答问题。

最有效的知识库构建方式是 QA 和手动构建。

Q 的长度不宜过长。

需要调整提示词,来引导模型回答知识库内容。

可以通过调整搜索相似度、最大搜索数量和限定词来控制模型回复的范围。

关于 Sealos Sealos 是一款以 Kubernetes 为内核的云操作系统发行版。它以云原生的方式,抛弃了传统的云计算架构,转向以 Kubernetes 为云内核的新架构,使企业能够像使用个人电脑一样简单地使用云。

🌟GitHub:https://github.com/labring/sealos

🏠官网:https://sealos.io

💻开发者论坛:https://forum.laf.run sealos 以kubernetes为内核的云操作系统发行版,让云原生简单普及

laf 写代码像写博客一样简单,什么docker kubernetes统统不关心,我只关心写业务!

阅读本书更多章节>>>>

本文链接:https://www.kjpai.cn/gushi/2024-05-04/164822.html,文章来源:网络cs,作者:纳雷武,版权归作者所有,如需转载请注明来源和作者,否则将追究法律责任!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

文章评论