跨境派

跨境派

跨境派,专注跨境行业新闻资讯、跨境电商知识分享!

当前位置:首页 > 卖家故事 > 网易大模型 RAG 问答知识库开源,Star 超 6K!!

网易大模型 RAG 问答知识库开源,Star 超 6K!!

时间:2024-05-04 12:31:13 来源:网络cs 作者:言安琪 栏目:卖家故事 阅读:

标签: 知识  模型 
阅读本书更多章节>>>> QAnything 架构设计剖析

整个架构(如下图所示)包括了模型和系统等所有必要的模块。模型方面包括 OCR 解析、Embedding/rerank,以及大模型。系统方面包括向量数据库、MySQL 数据库、前端、后端等必要的模块。整个引擎的功能完整,用户可以直接下载,不需要再搭配其他的模块即可使用。系统可扩展性也非常好,只要硬盘内存足够,就可以一直建库,支持无上限的文档。

图片

1、整个架构的工作流程主要包含三个环节:

索引(Indexing):文本索引的构建包括以下步骤:文档解析、文本分块、Embedding 向量化和创建索引。先将不同格式的原始文件解析转换为纯文本,再把文本切分成较小的文本块。通过 Embedding 为每一个文本块生成一个向量表示,用于计算文本向量和问题向量之间的相似度。创建索引将原始文本块和 Embedding 向量以键值对的形式存储,以便将来进行快速和频繁的搜索。

检索(Retrieval):使用 Embedding 模型将用户输入问题转换为向量,计算问题的 Embedding 向量和语料库中文本块 Embedding 向量之间的相似度,选择相似度最高的前 K 个文档块作为当前问题的增强上下文信息。

生成(Generation):将检索得到的前 K 个文本块和用户问题一起送进大模型,让大模型基于给定的文本块来回答用户的问题

2、为什么需要两阶段检索?

知识库数据量大的场景下两阶段优势非常明显,如果只用一阶段Embedding检索,随着数据量增大会出现检索降级的问题。二阶段 rerank重排后能实现准确率稳定增长,即数据越多,效果越好。

QAnything 使用的检索组件 BCEmbedding 有非常强悍的双语和跨语种能力,能消除语义检索里面的中英语言之间的差异。

3、使用的基座大模型

开源版本 QAnything 的大模型基于阿里通义千问,并在大量专业问答数据集上进行微调,在阿里千问的基础上大大加强了问答的能力。选择一个性价比高的大模型也是很重要的。

4、相关技术组件

BCEmbedding 文本嵌入模型

Triton Inference Server 推理服务

vLLM 在线推理服务加速器

FastChat 即时通讯平台

FasterTransformer 在线推理加速库

LangChain 应用开发框架

LangChain-Chatchat 聊天机器人应用

Milvus 向量数据库

PaddleOCR 图片识别组件

Sanic Python 3.6+ Web 框架

QAnything 本地部署

1、一键部署安装,特别简单

图片

2、部署安装 FAQ

https://github.com/netease-youdao/QAnything/blob/master/FAQ_zh.md

技术交流&资料

技术要学会分享、交流,不建议闭门造车。一个人可以走的很快、一堆人可以走的更远。

成立了大模型面试和技术交流群,相关资料、技术交流&答疑,均可加我们的交流群获取,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。

方式①、微信搜索公众号:机器学习社区,后台回复:加群
方式②、添加微信号:mlc2040,备注:来自CSDN + 技术交流

通俗易懂讲解大模型系列

重磅消息!《大模型面试宝典》(2024版) 正式发布!

重磅消息!《大模型实战宝典》(2024版) 正式发布!

做大模型也有1年多了,聊聊这段时间的感悟!

用通俗易懂的方式讲解:大模型算法工程师最全面试题汇总

用通俗易懂的方式讲解:不要再苦苦寻觅了!AI 大模型面试指南(含答案)的最全总结来了!

用通俗易懂的方式讲解:我的大模型岗位面试总结:共24家,9个offer

用通俗易懂的方式讲解:大模型 RAG 在 LangChain 中的应用实战

用通俗易懂的方式讲解:ChatGPT 开放的多模态的DALL-E 3功能,好玩到停不下来!

用通俗易懂的方式讲解:基于扩散模型(Diffusion),文生图 AnyText 的效果太棒了

用通俗易懂的方式讲解:在 CPU 服务器上部署 ChatGLM3-6B 模型

用通俗易懂的方式讲解:ChatGLM3-6B 部署指南

用通俗易懂的方式讲解:使用 LangChain 封装自定义的 LLM,太棒了

用通俗易懂的方式讲解:基于 Langchain 和 ChatChat 部署本地知识库问答系统

用通俗易懂的方式讲解:Llama2 部署讲解及试用方式

用通俗易懂的方式讲解:一份保姆级的 Stable Diffusion 部署教程,开启你的炼丹之路

用通俗易懂的方式讲解:LlamaIndex 官方发布高清大图,纵览高级 RAG技术

用通俗易懂的方式讲解:为什么大模型 Advanced RAG 方法对于AI的未来至关重要?

用通俗易懂的方式讲解:基于 Langchain 框架,利用 MongoDB 矢量搜索实现大模型 RAG 高级检索方法

阅读本书更多章节>>>>

本文链接:https://www.kjpai.cn/gushi/2024-05-04/164715.html,文章来源:网络cs,作者:言安琪,版权归作者所有,如需转载请注明来源和作者,否则将追究法律责任!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

文章评论