跨境派

跨境派

跨境派,专注跨境行业新闻资讯、跨境电商知识分享!

当前位置:首页 > 卖家故事 > Pytorch 分布式并行DDP 卡死 挂起

Pytorch 分布式并行DDP 卡死 挂起

时间:2024-04-14 12:05:30 来源:网络cs 作者:璐璐 栏目:卖家故事 阅读:

标签: 分布  并行 
阅读本书更多章节>>>>

问题描述:

1、使用A30显卡,使用分布式并行Distributed Data Parallel,运行程序时显卡显存充满,卡在设置local_rank处,并未启动进程组
2、如图:
在这里插入图片描述
在这里插入图片描述

解决方案:

0最新解决方案,针对Supermicro主板:BIOS->Advanced->NB Configuration->IOMMU->Disabled
在这里插入图片描述
==其它型号的主板的BIOS可能还需要禁用ACS:
https://zhuanlan.zhihu.com/p/607203976
https://www.supermicro.com/support/faqs/faq.cfm?faq=20264
https://www.supermicro.com/support/faqs/faq.cfm?faq=22226
后面的1-4可不看了~

1、更换后端为“Gloo”,正常执行shell命令运行程序。

torch.distributed.init_process_group(backend="Gloo")
python -m torch.distributed.launch --nproc_per_node=7 --master_port 8888 main.py

2、仍旧使用“NCCL”后端,但需要更改环境变量,在shell命令前加入禁用P2P。

torch.distributed.init_process_group(backend="NCCL")
NCCL_P2P_DISABLE=1 python -m torch.distributed.launch --nproc_per_node=7 --master_port 8888 main.py

3、仍旧使用“NCCL”后端,但需要更改环境变量,永久更改环境设置,正常执行shell命令运行程序。

torch.distributed.init_process_group(backend="NCCL")
vim ~/.bashrcexport NCCL_P2P_DISABLE=1source ~/.bashrc.
python -m torch.distributed.launch --nproc_per_node=7 --master_port 8888 main.py

4、建议使用第3个方案,据我测试,Gloo后端没有NCCL后端通信速度快,程序运行速度NCCL较快。另外,每次加上修改环境变量的命令也挺烦的,修改bash环境变量一劳永逸。

bug分析:

NCCL_P2P_DISABLE=1将禁用GPU之间直接通信(如使用NVlink或者PCIe),鉴于NVDIA官网显示A30支持NVlink或者PCIe,因此判断可能是硬件故障或者是软件版本不匹配导致P2P通信受阻,使得进程阻塞,程序挂起。

参考:

1:https://zhuanlan.zhihu.com/p/60054075
2:https://github.com/pytorch/pytorch/issues/23074

阅读本书更多章节>>>>

本文链接:https://www.kjpai.cn/gushi/2024-04-14/158473.html,文章来源:网络cs,作者:璐璐,版权归作者所有,如需转载请注明来源和作者,否则将追究法律责任!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

文章评论