跨境派

跨境派

跨境派,专注跨境行业新闻资讯、跨境电商知识分享!

当前位置:首页 > 卖家故事 > Python上海二手房源爬虫数据可视化分析大屏全屏系统 开题报告

Python上海二手房源爬虫数据可视化分析大屏全屏系统 开题报告

时间:2024-04-03 09:36:16 来源:网络cs 作者:欧阳逸 栏目:卖家故事 阅读:

标签: 系统  报告  化分  上海  数据  爬虫 
阅读本书更多章节>>>>

 博主介绍:黄菊华老师《Vue.js入门与商城开发实战》《微信小程序商城开发》图书作者,CSDN博客专家,在线教育专家,CSDN钻石讲师;专注大学生毕业设计教育和辅导。
所有项目都配有从入门到精通的基础知识视频课程,学习后应对毕业设计答辩。
项目配有对应开发文档、开题报告、任务书、PPT、论文模版等

项目都录了发布和功能操作演示视频;项目的界面和功能都可以定制,包安装运行!!!

如果需要联系我,可以在CSDN网站查询黄菊华老师
在文章末尾可以获取联系方式

Python上海二手房源爬虫数据

可视化分析大屏全屏系统

开题报告

X X X X 大学/学校/学院

毕业论文(设计)开题报告书

学生姓名

所属

学院

学号

专业班级

论文(设计)题目

Python上海二手房源爬虫数据可视化分析大屏全屏系统设计与实现

指导教师姓名(职称)

开题日期

选题依据:1.研究背景与意义;2.国内外研究(应用与发展)现状。

1:研究背景与意义

Python上海二手房源爬虫数据可视化分析大屏全屏系统的研究背景与意义如下:

研究背景:

上海房地产市场的地位:上海作为中国的经济中心,其房地产市场在国内乃至全球都具有重要地位。二手房市场作为上海房地产市场的重要组成部分,其活跃度和市场规模都相当可观。

数据增长的挑战:随着互联网和大数据技术的普及,上海二手房源的数据量急剧增加,这使得人工处理和分析这些数据变得越来越困难。

技术与工具的发展:Python编程语言及其相关的爬虫、数据可视化技术为处理和分析大规模数据提供了有效的手段。

研究意义:

提升市场效率:通过Python爬虫技术,可以快速、自动地获取上海二手房源的数据,这大大提高了数据获取的效率,降低了人工成本。

增强数据透明度:通过数据可视化分析,可以更直观、更全面地展示上海二手房市场的动态和趋势,增强市场的透明度,减少信息不对称。

辅助决策制定:对于投资者、购房者、政策制定者等,基于Python的二手房源爬虫数据可视化分析可以提供更准确、更及时的市场信息,为决策制定提供数据支持。

推动技术创新与应用:研究和实践Python上海二手房源爬虫数据可视化分析大屏全屏系统,可以推动相关领域的技术创新和应用拓展,为房地产行业和大数据技术领域的发展注入新的活力。

总结来说,这一研究在房地产数据分析领域具有明显的实际意义和市场应用价值,同时也为相关技术和工具的发展提供了新的研究和应用场景。

2:国内外研究现状

Python上海二手房源爬虫数据可视化分析大屏全屏系统的国内外研究现状如下:

国内研究现状:

在国内,对于二手房源数据爬取和分析的需求日益增加,特别是在上海这样的一线城市。目前,已经有一些团队和企业利用Python进行上海二手房源数据的爬取工作,并取得了初步的成果。他们使用Python的爬虫库,如Scrapy和BeautifulSoup等,从各大房地产网站抓取二手房源信息,并进行数据清洗和整理。

在数据可视化方面,国内的研究主要集中在传统的图表展示上,如柱状图、折线图和饼图等。虽然这些图表能够展示一些基本的统计信息,但对于全面、深入地理解二手房市场还存在一定的局限性。此外,国内在二手房数据大屏展示方面的研究还相对较少,仍有一些技术挑战需要克服,如数据实时更新、交互性等方面的问题。

国外研究现状:

相比之下,国外在Python二手房源爬虫数据可视化分析大屏全屏系统方面的研究更为成熟。他们不仅拥有先进的爬虫技术和数据处理方法,还注重将数据分析与业务实践相结合,开发出更具有实用价值和商业价值的应用系统。

在数据可视化方面,国外的研究更加注重创新和交互性,尝试使用各种新颖的可视化技术和工具来展示二手房市场的数据。例如,一些国外的研究团队利用大屏全屏系统展示二手房市场的实时数据和分析结果,通过动态图表、地图、热力图等方式呈现市场的动态和趋势。这些可视化方式不仅提供了更直观、更全面的信息展示,还增强了用户与数据的互动体验。

总结来说,国内外在Python上海二手房源爬虫数据可视化分析大屏全屏系统领域都有一定的研究基础和实践经验。但国内的研究还存在一些不足和挑战需要克服,如技术创新、数据完整性等方面还有待进一步提高。同时可以借鉴国外的一些先进技术和实践经验来推动该领域的研究与应用发展。

3:研究思路与方法

3.1研究思路

通过图书馆借阅开发相关书籍或者网络上寻找相关课题视频,查询网络以及向导师寻求帮助等方法解决技术上的问题。

具体步骤为:

(1)对系统进行需求分析,明确管理员功能,前端开发功能,开发框架模式等;

(2)对系统进行概要设计,搭建开发换进,建立系统的架构图、功能模块图等;

(3)对系统管理后台,设计出所有功能模块;

(4)对用户前端,设计出所有功能模块;

(5)进行软件编码,实现系统各项功能;

(6)对系统进行各种测试;

(7)提交系统,撰写论文。

选定了项目开发模式、后台的开发框架,搭建好开发环境和安装好对应的开发工具;接下来就设计数据库,开发后台和接口,开发完整的项目后台和前端,完成最终的作品、测试、使用。

3.2研究方法

为了更好完善系统使用了以下研究方法:

(1)文献阅读法

通过各个文献查找网站、学校图书馆以及百度百科查询和借鉴课题相关的论文资料,然后将适合的资料保存到本地,开发的时候使用。

(2)比较法:通过对国内外有关课题系统的功能、相关技术、内容等方面进行比较分析,从而提出系统所存在的问题,并提出相应的解决措施

(3)模拟法

模拟法是先依照原型的主要特征,创设一个相似的模型,然后通过模型来间接研究原型的一种形容方法。我们通过将本地电脑模拟为服务器进行本地操作,达到开发的最终效果。

3.3可行性

1.技术可行性

以Windows7或10为操作系统,基于python3.8版本,采用PyCharm软件为开发工具,运用mysql进行数据库存储;后台管理系统硬件环境是PC机,用户使用任何能上网的电脑设置,使用浏览器即可访问新闻管理系统。

2.经济可行性

一方面,只要有能上网的电脑,系统的管理员在任何地方任何时候都可以管理,工作效率进一步提高从而节省人力、物力,只要会打字即可,不需要很高的学历;另一方面,系统的制作成本低,在现有的PC机上即可使用PyCharm开发者工具进行开发。

3.操作可行性

从管理来说,只要有一台普通的电脑就可以进行网站信息的设置、录入、修改,操作非常方便而且可行度很高。

 4.数据来源可行性

来源知名房产网站数据,数据已经很普及了,使用也很广,有代表性

4:系统初步设计方案

4.1主要设计技术

开发环境:python3.8+

开发语言:Python

开发框架:Django框架

数据采集:requests + parsel + Xpath

可视化模块:Echarts

开发工具:Pycharm

数据库:mysql8

数据库管理工具:navicat

其他开发语言:html + css +javascript

4.2研究内容

我们这里以我们打算实现的系统内容,分析如下,数据来源链家

大屏全屏可视化展示:

二手房基础数据:房源总数多少套,小区总数多少个,房源平均面积,房源平均价格各个区域二手房均价销售数据(柱形图)各个区域房源平均面积(折线图)创新点,在区域地区,按各个区域显示房源数目各个区域的小区数量和房源数量,双柱形图显示各个面积户型占比分析:89方以下,90到149方,150-199方,200方以上最新房源数据,滚动显示最新10个房源信息

后台内容:

管理员登录、密码修改、退出系统展示所有房源数据,可以链接到原始地址区域数据列表:显示各区的销售数据,包含房源数,平均面积,平均价格等小区数据列表:显示各个小区所在区域,小区的房源数,小区房源的平均价格和面积等

5:进度安排

2023.09.10—2023.10.15  查看大量的文献,收集课题有关资料,确定论文选题;

2023.10.16—2023.10.30  在老师的指导下,填写毕业论文任务书;

2023.10.31—2023.11.15  大量收集论文资料,理清论文思路,对论文思路进行完善。

2023.11.16—2023.12.22  完成开题报告答辩;

2023.12.23—2023.12.27  根据指导老师提出的建议再进行修改,完善系统功能设计

2023.12.28—2024.04.10  在查阅大量文献之后,运用多种研究方案,完成系统开发并基本完成论文初稿。

2024.04.01—2024.04.15  将初稿完善交由导师审阅,提出修改建议。

2024.04.16—2024.05.14  在导师指导下,对论文进行反复修改形成终稿,装订成册上交学院,同时为毕业论文答辩做准备工作

2024.05.15  进行毕业论文答辩

6:论文(设计)写作提纲

摘要      

第1章 绪论 

       1.1 项目研究背景和意义

       1.2 论文研究目的

       1.3 系统主要功能

第2章 系统相关技术 

       2.1 开发概要

       2.2 开发技术

              2.2.1 Python介绍

              2.2.2 Django框架

       2.3 MYSQL 数据库

       2.4 其他网页技术

              2.5.1 什么是HTML

              2.5.2 什么是 CSS

              2.5.3 JavaScript    

       2.6 本章小结

第3章 系统分析 

       3.1 系统概要

       3.2 数据库和图形

              3.2.1 数据ER原型图  

              3.1.2 实体图 

              3.1.3 数据库表    

       3.3 前端需求分析

       3.4 后台需求分析

       3.5 本章小结

第4章 系统设计与实现     

       4.1 前端实现

       4.2 后台实现

       4.3 本章小结

第5章 总结与展望     

       5.1 总结

       5.2 展望

参考文献      

致谢      

7:参考文献

[1]麻清应,马权. Web前端框架开发技术[M].重庆大学电子音像出版社,2020. 08.

[2]李云.基于网站制作的Web前端开发技术与优化[J].电子技术与软件工程,2021(22): 50-52.

[3]黑马程序员.HTMLHSS+JavaScript网页制作案例教程(第2版)[M].北京:人民邮电出版社,2021.

[4]王千林.基于B/S架构固定资产管理系统设计与实现[J].电脑知识与技术.2020(07)

[5]代飞,艾迪. Web前端开发项目案例教程[M],北京理工大学出版社,2020. 08.

[6]郑智方. MySQL的重要性以及步入云的应用实例[J].计算机产品与流通,2020(01):151.

[7]陈漫红.数据库原理与应用教程SQL Server 2012[M],北京理工大学出版社,2021. 01.

[8]李曼. MySQL数据库系统中文乱码问题及解决方案[J].电子技术与软件程,2021(12):176-177.

[9]王征,李晓波 著. Python从入门到精通[M], 中国铁道出版社,2020-01-01

[10]胡阳. Django企业开发实战[M], 人民邮电出版社,2021. 06.

[11]李宁,python从菜鸟到高手[M]. 北京:清华大学出版社,2018. 219~315

[12]关东升,看漫画学python[M]. 北京:电子工业出版社,2020. 36~78

[13]王英英,MySQ 8 快速入门[M]. 北京:清华大学出版社,2020. 200~256

[14]慕课教育研发中心,HTML+CSS3+JavaScript从入门到项目实践[M]. 北京:清华大学出版社,2019. 11~40

[15]黄永祥,精通Django 3 web开发[M]. 北京:清华大学出版社,2020. 50~148

[16]胡阳,Django 企业开发实战[M]. 北京:人民邮电出版社,2019. 108~210

指导教师意见:

意见从以下几个方面展开:

选题的研究价值。2、选题依据与写作提纲是否符合要求。

3、对研究思路、方法的评价。4、是否同意开题。(指导意见打印,签名指导教师务必手写)

指导教师签名:

年    月     日

阅读本书更多章节>>>>

本文链接:https://www.kjpai.cn/gushi/2024-04-03/153103.html,文章来源:网络cs,作者:欧阳逸,版权归作者所有,如需转载请注明来源和作者,否则将追究法律责任!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

文章评论