跨境派

跨境派

跨境派,专注跨境行业新闻资讯、跨境电商知识分享!

当前位置:首页 > 卖家故事 > 深度学习网络模型————Swin-Transformer详细讲解与代码实现

深度学习网络模型————Swin-Transformer详细讲解与代码实现

时间:2024-04-01 12:05:34 来源:网络cs 作者:璐璐 栏目:卖家故事 阅读:

标签: 实现  讲解  详细  学习  网络  模型  深度 
阅读本书更多章节>>>>

深度学习网络模型——Swin-Transformer详细讲解与代码实现

一、网路模型整体架构二、Patch Partition模块详解三、Patch Merging模块四、W-MSA详解五、SW-MSA详解masked MSA详解 六、 Relative Position Bias详解七、模型详细配置参数八、重要模块代码实现:1、Patch Partition代码模块:2、Patch Merging代码模块:3、mask掩码生成代码模块:4、stage堆叠部分代码:5、SW-MSA或者W-MSA模块代码: 九:模型整体流程代码实现:
论文名称:Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
原论文地址: https://arxiv.org/abs/2103.14030
官方开源代码地址:https://github.com/microsoft/Swin-Transformer

在这里插入图片描述

一、网路模型整体架构

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

二、Patch Partition模块详解

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三、Patch Merging模块

在这里插入图片描述
在这里插入图片描述

四、W-MSA详解

在这里插入图片描述

在这里插入图片描述

五、SW-MSA详解

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

masked MSA详解

在这里插入图片描述

六、 Relative Position Bias详解

在这里插入图片描述
在这里插入图片描述

七、模型详细配置参数

在这里插入图片描述

八、重要模块代码实现:

1、Patch Partition代码模块:

class PatchEmbed(nn.Module):    """    2D Image to Patch Embedding    split image into non-overlapping patches   即将图片划分成一个个没有重叠的patch    """    def __init__(self, patch_size=4, in_c=3, embed_dim=96, norm_layer=None):        super().__init__()        patch_size = (patch_size, patch_size)        self.patch_size = patch_size        self.in_chans = in_c        self.embed_dim = embed_dim        self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()    def forward(self, x):        _, _, H, W = x.shape        # padding        # 如果输入图片的H,W不是patch_size的整数倍,需要进行padding        pad_input = (H % self.patch_size[0] != 0) or (W % self.patch_size[1] != 0)        if pad_input:            # to pad the last 3 dimensions,            # (W_left, W_right, H_top,H_bottom, C_front, C_back)            x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1],   # 表示宽度方向右侧填充数                          0, self.patch_size[0] - H % self.patch_size[0],   # 表示高度方向底部填充数                          0, 0))        # 下采样patch_size倍        x = self.proj(x)        _, _, H, W = x.shape        # flatten: [B, C, H, W] -> [B, C, HW]        # transpose: [B, C, HW] -> [B, HW, C]        x = x.flatten(2).transpose(1, 2)        x = self.norm(x)        return x, H, W

2、Patch Merging代码模块:

class PatchMerging(nn.Module):    r""" Patch Merging Layer.        步长为2,间隔采样    Args:        dim (int): Number of input channels.        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm    """    def __init__(self, dim, norm_layer=nn.LayerNorm):        super().__init__()        self.dim = dim        self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)        self.norm = norm_layer(4 * dim)    def forward(self, x, H, W):        """        x: B, H*W, C    即输入x的通道排列顺序        """        B, L, C = x.shape        assert L == H * W, "input feature has wrong size"        x = x.view(B, H, W, C)        # padding        # 如果输入feature map的H,W不是2的整数倍,需要进行padding        pad_input = (H % 2 == 1) or (W % 2 == 1)        if pad_input:            # to pad the last 3 dimensions, starting from the last dimension and moving forward.            # (C_front, C_back, W_left, W_right, H_top, H_bottom)            # 注意这里的Tensor通道是[B, H, W, C],所以会和官方文档有些不同            x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))        # 以2为间隔进行采样        x0 = x[:, 0::2, 0::2, :]  # [B, H/2, W/2, C]        x1 = x[:, 1::2, 0::2, :]  # [B, H/2, W/2, C]        x2 = x[:, 0::2, 1::2, :]  # [B, H/2, W/2, C]        x3 = x[:, 1::2, 1::2, :]  # [B, H/2, W/2, C]        x = torch.cat([x0, x1, x2, x3], -1)  #  ————————>  [B, H/2, W/2, 4*C]   在channael维度上进行拼接        x = x.view(B, -1, 4 * C)  # [B, H/2*W/2, 4*C]        x = self.norm(x)        x = self.reduction(x)  # [B, H/2*W/2, 2*C]        return x

3、mask掩码生成代码模块:

    def create_mask(self, x, H, W):        # calculate attention mask for SW-MSA        # 保证Hp和Wp是window_size的整数倍        Hp = int(np.ceil(H / self.window_size)) * self.window_size        Wp = int(np.ceil(W / self.window_size)) * self.window_size        # 拥有和feature map一样的通道排列顺序,方便后续window_partition        img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device)  # [1, Hp, Wp, 1]        h_slices = (slice(0, -self.window_size),                    slice(-self.window_size, -self.shift_size),                    slice(-self.shift_size, None))        w_slices = (slice(0, -self.window_size),                    slice(-self.window_size, -self.shift_size),                    slice(-self.shift_size, None))        cnt = 0        for h in h_slices:            for w in w_slices:                img_mask[:, h, w, :] = cnt                cnt += 1        # 将img_mask划分成一个一个窗口        mask_windows = window_partition(img_mask, self.window_size)  # [nW, Mh, Mw, 1]           # 输出的是按照指定的window_size划分成一个一个窗口的数据        mask_windows = mask_windows.view(-1, self.window_size * self.window_size)  # [nW, Mh*Mw]        attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)  # [nW, 1, Mh*Mw] - [nW, Mh*Mw, 1]  使用了广播机制        # [nW, Mh*Mw, Mh*Mw]        # 因为需要求得的是自身注意力机制,所以,所以相同的区域使用0表示,;不同的区域不等于0,填入-100,这样,在求得        attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))   # 即对于不等于0的位置,赋值为-100;否则为0        return attn_mask

4、stage堆叠部分代码:

class BasicLayer(nn.Module):    """    A basic Swin Transformer layer for one stage.    Args:        dim (int): Number of input channels.        depth (int): Number of blocks.        num_heads (int): Number of attention heads.        window_size (int): Local window size.        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True        drop (float, optional): Dropout rate. Default: 0.0        attn_drop (float, optional): Attention dropout rate. Default: 0.0        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0        norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm        downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.    """    def __init__(self, dim, depth, num_heads, window_size,                 mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0.,                 drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):        super().__init__()        self.dim = dim        self.depth = depth        self.window_size = window_size        self.use_checkpoint = use_checkpoint        self.shift_size = window_size // 2  # 表示向右和向下偏移的窗口大小   即窗口大小除以2,然后向下取整        # build blocks        self.blocks = nn.ModuleList([            SwinTransformerBlock(                dim=dim,                num_heads=num_heads,                window_size=window_size,                shift_size=0 if (i % 2 == 0) else self.shift_size,   # 通过判断shift_size是否等于0,来决定是使用W-MSA与SW-MSA                mlp_ratio=mlp_ratio,                qkv_bias=qkv_bias,                drop=drop,                attn_drop=attn_drop,                drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,                norm_layer=norm_layer)            for i in range(depth)])        # patch merging layer    即:PatchMerging类        if downsample is not None:            self.downsample = downsample(dim=dim, norm_layer=norm_layer)        else:            self.downsample = None    def create_mask(self, x, H, W):        # calculate attention mask for SW-MSA        # 保证Hp和Wp是window_size的整数倍        Hp = int(np.ceil(H / self.window_size)) * self.window_size        Wp = int(np.ceil(W / self.window_size)) * self.window_size        # 拥有和feature map一样的通道排列顺序,方便后续window_partition        img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device)  # [1, Hp, Wp, 1]        h_slices = (slice(0, -self.window_size),                    slice(-self.window_size, -self.shift_size),                    slice(-self.shift_size, None))        w_slices = (slice(0, -self.window_size),                    slice(-self.window_size, -self.shift_size),                    slice(-self.shift_size, None))        cnt = 0        for h in h_slices:            for w in w_slices:                img_mask[:, h, w, :] = cnt                cnt += 1        # 将img_mask划分成一个一个窗口        mask_windows = window_partition(img_mask, self.window_size)  # [nW, Mh, Mw, 1]           # 输出的是按照指定的window_size划分成一个一个窗口的数据        mask_windows = mask_windows.view(-1, self.window_size * self.window_size)  # [nW, Mh*Mw]        attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)  # [nW, 1, Mh*Mw] - [nW, Mh*Mw, 1]  使用了广播机制        # [nW, Mh*Mw, Mh*Mw]        # 因为需要求得的是自身注意力机制,所以,所以相同的区域使用0表示,;不同的区域不等于0,填入-100,这样,在求得        attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))   # 即对于不等于0的位置,赋值为-100;否则为0        return attn_mask    def forward(self, x, H, W):        attn_mask = self.create_mask(x, H, W)  # [nW, Mh*Mw, Mh*Mw]   # 制作mask蒙版        for blk in self.blocks:            blk.H, blk.W = H, W            if not torch.jit.is_scripting() and self.use_checkpoint:                x = checkpoint.checkpoint(blk, x, attn_mask)            else:                x = blk(x, attn_mask)        if self.downsample is not None:            x = self.downsample(x, H, W)            H, W = (H + 1) // 2, (W + 1) // 2        return x, H, W

5、SW-MSA或者W-MSA模块代码:

class SwinTransformerBlock(nn.Module):    r""" Swin Transformer Block.    Args:        dim (int): Number of input channels.        num_heads (int): Number of attention heads.        window_size (int): Window size.        shift_size (int): Shift size for SW-MSA.        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True        drop (float, optional): Dropout rate. Default: 0.0        attn_drop (float, optional): Attention dropout rate. Default: 0.0        drop_path (float, optional): Stochastic depth rate. Default: 0.0        act_layer (nn.Module, optional): Activation layer. Default: nn.GELU        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm    """    def __init__(self, dim, num_heads, window_size=7, shift_size=0,                 mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,                 act_layer=nn.GELU, norm_layer=nn.LayerNorm):        super().__init__()        self.dim = dim        self.num_heads = num_heads        self.window_size = window_size        self.shift_size = shift_size        self.mlp_ratio = mlp_ratio        assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"        self.norm1 = norm_layer(dim)    # 先经过层归一化处理        # WindowAttention即为:SW-MSA或者W-MSA模块        self.attn = WindowAttention(            dim, window_size=(self.window_size, self.window_size), num_heads=num_heads, qkv_bias=qkv_bias,            attn_drop=attn_drop, proj_drop=drop)        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()        self.norm2 = norm_layer(dim)        mlp_hidden_dim = int(dim * mlp_ratio)        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)    def forward(self, x, attn_mask):        H, W = self.H, self.W        B, L, C = x.shape        assert L == H * W, "input feature has wrong size"        shortcut = x        x = self.norm1(x)        x = x.view(B, H, W, C)        # pad feature maps to multiples of window size        # 把feature map给pad到window size的整数倍        pad_l = pad_t = 0        pad_r = (self.window_size - W % self.window_size) % self.window_size        pad_b = (self.window_size - H % self.window_size) % self.window_size        x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))        _, Hp, Wp, _ = x.shape        # cyclic shift        # 判断是进行SW-MSA或者是W-MSA模块        if self.shift_size > 0:            # https://blog.csdn.net/ooooocj/article/details/126046858?ops_request_misc=&request_id=&biz_id=102&utm_term=torch.roll()%E7%94%A8%E6%B3%95&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduweb~default-0-126046858.142^v73^control,201^v4^add_ask,239^v1^control&spm=1018.2226.3001.4187            shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))    #进行数据移动操作        else:            shifted_x = x            attn_mask = None        # partition windows        # 将窗口按照window_size的大小进行划分,得到一个个窗口        x_windows = window_partition(shifted_x, self.window_size)  # [nW*B, Mh, Mw, C]        # 将数据进行展平操作        x_windows = x_windows.view(-1, self.window_size * self.window_size, C)  # [nW*B, Mh*Mw, C]        # W-MSA/SW-MSA        """            # 进行多头自注意力机制操作        """        attn_windows = self.attn(x_windows, mask=attn_mask)  # [nW*B, Mh*Mw, C]        # merge windows        attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)  # [nW*B, Mh, Mw, C]        # 将多窗口拼接回大的featureMap        shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp)  # [B, H', W', C]        # reverse cyclic shift        # 将移位的数据进行还原        if self.shift_size > 0:            x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))        else:            x = shifted_x        # 如果进行了padding操作,需要移出掉相应的pad        if pad_r > 0 or pad_b > 0:            # 把前面pad的数据移除掉            x = x[:, :H, :W, :].contiguous()        x = x.view(B, H * W, C)        # FFN        x = shortcut + self.drop_path(x)        x = x + self.drop_path(self.mlp(self.norm2(x)))        return x

九:模型整体流程代码实现:

""" Swin TransformerA PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows`    - https://arxiv.org/pdf/2103.14030Code/weights from https://github.com/microsoft/Swin-Transformer"""import torchimport torch.nn as nnimport torch.nn.functional as Fimport torch.utils.checkpoint as checkpointimport numpy as npfrom typing import Optionaldef drop_path_f(x, drop_prob: float = 0., training: bool = False):    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).    This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,    the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for    changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use    'survival rate' as the argument.    """    if drop_prob == 0. or not training:        return x    keep_prob = 1 - drop_prob    shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets    random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)    random_tensor.floor_()  # binarize    output = x.div(keep_prob) * random_tensor    return outputclass DropPath(nn.Module):    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).    """    def __init__(self, drop_prob=None):        super(DropPath, self).__init__()        self.drop_prob = drop_prob    def forward(self, x):        return drop_path_f(x, self.drop_prob, self.training)"""    将窗口按照window_size的大小进行划分,得到一个个窗口"""def window_partition(x, window_size: int):    """    将feature map按照window_size划分成一个个没有重叠的window    Args:        x: (B, H, W, C)        window_size (int): window size(M)    Returns:        windows: (num_windows*B, window_size, window_size, C)    """    B, H, W, C = x.shape    x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)    # permute: [B, H//Mh, Mh, W//Mw, Mw, C] -> [B, H//Mh, W//Mh, Mw, Mw, C]    # view: [B, H//Mh, W//Mw, Mh, Mw, C] -> [B*num_windows, Mh, Mw, C]    windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)   # 输出的是按照指定的window_size划分成一个一个窗口的数据    return windowsdef window_reverse(windows, window_size: int, H: int, W: int):    """    将一个个window还原成一个feature map    Args:        windows: (num_windows*B, window_size, window_size, C)        window_size (int): Window size(M)        H (int): Height of image        W (int): Width of image    Returns:        x: (B, H, W, C)    """    B = int(windows.shape[0] / (H * W / window_size / window_size))    # view: [B*num_windows, Mh, Mw, C] -> [B, H//Mh, W//Mw, Mh, Mw, C]    x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)    # permute: [B, H//Mh, W//Mw, Mh, Mw, C] -> [B, H//Mh, Mh, W//Mw, Mw, C]    # view: [B, H//Mh, Mh, W//Mw, Mw, C] -> [B, H, W, C]    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)    return xclass PatchEmbed(nn.Module):    """    2D Image to Patch Embedding    split image into non-overlapping patches   即将图片划分成一个个没有重叠的patch    """    def __init__(self, patch_size=4, in_c=3, embed_dim=96, norm_layer=None):        super().__init__()        patch_size = (patch_size, patch_size)        self.patch_size = patch_size        self.in_chans = in_c        self.embed_dim = embed_dim        self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()    def forward(self, x):        _, _, H, W = x.shape        # padding        # 如果输入图片的H,W不是patch_size的整数倍,需要进行padding        pad_input = (H % self.patch_size[0] != 0) or (W % self.patch_size[1] != 0)        if pad_input:            # to pad the last 3 dimensions,            # (W_left, W_right, H_top,H_bottom, C_front, C_back)            x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1],   # 表示宽度方向右侧填充数                          0, self.patch_size[0] - H % self.patch_size[0],   # 表示高度方向底部填充数                          0, 0))        # 下采样patch_size倍        x = self.proj(x)        _, _, H, W = x.shape        # flatten: [B, C, H, W] -> [B, C, HW]        # transpose: [B, C, HW] -> [B, HW, C]        x = x.flatten(2).transpose(1, 2)        x = self.norm(x)        return x, H, Wclass PatchMerging(nn.Module):    r""" Patch Merging Layer.        步长为2,间隔采样    Args:        dim (int): Number of input channels.        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm    """    def __init__(self, dim, norm_layer=nn.LayerNorm):        super().__init__()        self.dim = dim        self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)        self.norm = norm_layer(4 * dim)    def forward(self, x, H, W):        """        x: B, H*W, C    即输入x的通道排列顺序        """        B, L, C = x.shape        assert L == H * W, "input feature has wrong size"        x = x.view(B, H, W, C)        # padding        # 如果输入feature map的H,W不是2的整数倍,需要进行padding        pad_input = (H % 2 == 1) or (W % 2 == 1)        if pad_input:            # to pad the last 3 dimensions, starting from the last dimension and moving forward.            # (C_front, C_back, W_left, W_right, H_top, H_bottom)            # 注意这里的Tensor通道是[B, H, W, C],所以会和官方文档有些不同            x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))        # 以2为间隔进行采样        x0 = x[:, 0::2, 0::2, :]  # [B, H/2, W/2, C]        x1 = x[:, 1::2, 0::2, :]  # [B, H/2, W/2, C]        x2 = x[:, 0::2, 1::2, :]  # [B, H/2, W/2, C]        x3 = x[:, 1::2, 1::2, :]  # [B, H/2, W/2, C]        x = torch.cat([x0, x1, x2, x3], -1)  #  ————————>  [B, H/2, W/2, 4*C]   在channael维度上进行拼接        x = x.view(B, -1, 4 * C)  # [B, H/2*W/2, 4*C]        x = self.norm(x)        x = self.reduction(x)  # [B, H/2*W/2, 2*C]        return x"""MLP模块"""class Mlp(nn.Module):    """ MLP as used in Vision Transformer, MLP-Mixer and related networks    """    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):        super().__init__()        out_features = out_features or in_features        hidden_features = hidden_features or in_features        self.fc1 = nn.Linear(in_features, hidden_features)        self.act = act_layer()        self.drop1 = nn.Dropout(drop)        self.fc2 = nn.Linear(hidden_features, out_features)        self.drop2 = nn.Dropout(drop)    def forward(self, x):        x = self.fc1(x)        x = self.act(x)        x = self.drop1(x)        x = self.fc2(x)        x = self.drop2(x)        return x"""WindowAttention即为:SW-MSA或者W-MSA模块"""class WindowAttention(nn.Module):    r""" Window based multi-head self attention (W-MSA) module with relative position bias.    It supports both of shifted and non-shifted window.    Args:        dim (int): Number of input channels.        window_size (tuple[int]): The height and width of the window.        num_heads (int): Number of attention heads.        qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True        attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0        proj_drop (float, optional): Dropout ratio of output. Default: 0.0    """    def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.):        super().__init__()        self.dim = dim        self.window_size = window_size  # [Mh, Mw]        self.num_heads = num_heads        head_dim = dim // num_heads        self.scale = head_dim ** -0.5        # define a parameter table of relative position bias        # 创建偏置bias项矩阵        self.relative_position_bias_table = nn.Parameter(            torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads))  # [2*Mh-1 * 2*Mw-1, nH]    其元素的个数===>>[(2*Mh-1) * (2*Mw-1)]        # get pair-wise relative position index for each token inside the window        coords_h = torch.arange(self.window_size[0])  # 如果此处的self.window_size[0]为2的话,则生成的coords_h为[0,1]        coords_w = torch.arange(self.window_size[1])  # 同理得        coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # [2, Mh, Mw]        coords_flatten = torch.flatten(coords, 1)  # [2, Mh*Mw]        # [2, Mh*Mw, 1] - [2, 1, Mh*Mw]        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # [2, Mh*Mw, Mh*Mw]        relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # [Mh*Mw, Mh*Mw, 2]        relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0  行标+(M-1)        relative_coords[:, :, 1] += self.window_size[1] - 1     # 列表标+(M-1)        relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1        relative_position_index = relative_coords.sum(-1)  # [Mh*Mw, Mh*Mw]        self.register_buffer("relative_position_index", relative_position_index)   # 将relative_position_index放入到模型的缓存当中        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)        self.attn_drop = nn.Dropout(attn_drop)        self.proj = nn.Linear(dim, dim)        self.proj_drop = nn.Dropout(proj_drop)        nn.init.trunc_normal_(self.relative_position_bias_table, std=.02)        self.softmax = nn.Softmax(dim=-1)    def forward(self, x, mask: Optional[torch.Tensor] = None):        """        Args:            x: input features with shape of (num_windows*B, Mh*Mw, C)            mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None        """        # [batch_size*num_windows, Mh*Mw, total_embed_dim]        B_, N, C = x.shape        # qkv(): -> [batch_size*num_windows, Mh*Mw, 3 * total_embed_dim]        # reshape: -> [batch_size*num_windows, Mh*Mw, 3, num_heads, embed_dim_per_head]        # permute: -> [3, batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]        qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)        # [batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]        q, k, v = qkv.unbind(0)  # make torchscript happy (cannot use tensor as tuple)        # transpose: -> [batch_size*num_windows, num_heads, embed_dim_per_head, Mh*Mw]        # @: multiply -> [batch_size*num_windows, num_heads, Mh*Mw, Mh*Mw]        q = q * self.scale        attn = (q @ k.transpose(-2, -1))        # relative_position_bias_table.view: [Mh*Mw*Mh*Mw,nH] -> [Mh*Mw,Mh*Mw,nH]        relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(            self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # [nH, Mh*Mw, Mh*Mw]        attn = attn + relative_position_bias.unsqueeze(0)        # 进行mask,相同区域使用0表示;不同区域使用-100表示        if mask is not None:            # mask: [nW, Mh*Mw, Mh*Mw]            nW = mask.shape[0]  # num_windows            # attn.view: [batch_size, num_windows, num_heads, Mh*Mw, Mh*Mw]            # mask.unsqueeze: [1, nW, 1, Mh*Mw, Mh*Mw]            attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)            attn = attn.view(-1, self.num_heads, N, N)            attn = self.softmax(attn)        else:            attn = self.softmax(attn)        attn = self.attn_drop(attn)        # @: multiply -> [batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]        # transpose: -> [batch_size*num_windows, Mh*Mw, num_heads, embed_dim_per_head]        # reshape: -> [batch_size*num_windows, Mh*Mw, total_embed_dim]        x = (attn @ v).transpose(1, 2).reshape(B_, N, C)        x = self.proj(x)        x = self.proj_drop(x)        return x"""    SwinTransformerBlock"""class SwinTransformerBlock(nn.Module):    r""" Swin Transformer Block.    Args:        dim (int): Number of input channels.        num_heads (int): Number of attention heads.        window_size (int): Window size.        shift_size (int): Shift size for SW-MSA.        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True        drop (float, optional): Dropout rate. Default: 0.0        attn_drop (float, optional): Attention dropout rate. Default: 0.0        drop_path (float, optional): Stochastic depth rate. Default: 0.0        act_layer (nn.Module, optional): Activation layer. Default: nn.GELU        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm    """    def __init__(self, dim, num_heads, window_size=7, shift_size=0,                 mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,                 act_layer=nn.GELU, norm_layer=nn.LayerNorm):        super().__init__()        self.dim = dim        self.num_heads = num_heads        self.window_size = window_size        self.shift_size = shift_size        self.mlp_ratio = mlp_ratio        assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"        self.norm1 = norm_layer(dim)    # 先经过层归一化处理        # WindowAttention即为:SW-MSA或者W-MSA模块        self.attn = WindowAttention(            dim, window_size=(self.window_size, self.window_size), num_heads=num_heads, qkv_bias=qkv_bias,            attn_drop=attn_drop, proj_drop=drop)        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()        self.norm2 = norm_layer(dim)        mlp_hidden_dim = int(dim * mlp_ratio)        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)    def forward(self, x, attn_mask):        H, W = self.H, self.W        B, L, C = x.shape        assert L == H * W, "input feature has wrong size"        shortcut = x        x = self.norm1(x)        x = x.view(B, H, W, C)        # pad feature maps to multiples of window size        # 把feature map给pad到window size的整数倍        pad_l = pad_t = 0        pad_r = (self.window_size - W % self.window_size) % self.window_size        pad_b = (self.window_size - H % self.window_size) % self.window_size        x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))        _, Hp, Wp, _ = x.shape        # cyclic shift        # 判断是进行SW-MSA或者是W-MSA模块        if self.shift_size > 0:            # https://blog.csdn.net/ooooocj/article/details/126046858?ops_request_misc=&request_id=&biz_id=102&utm_term=torch.roll()%E7%94%A8%E6%B3%95&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduweb~default-0-126046858.142^v73^control,201^v4^add_ask,239^v1^control&spm=1018.2226.3001.4187            shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))    #进行数据移动操作        else:            shifted_x = x            attn_mask = None        # partition windows        # 将窗口按照window_size的大小进行划分,得到一个个窗口        x_windows = window_partition(shifted_x, self.window_size)  # [nW*B, Mh, Mw, C]        # 将数据进行展平操作        x_windows = x_windows.view(-1, self.window_size * self.window_size, C)  # [nW*B, Mh*Mw, C]        # W-MSA/SW-MSA        """            # 进行多头自注意力机制操作        """        attn_windows = self.attn(x_windows, mask=attn_mask)  # [nW*B, Mh*Mw, C]        # merge windows        attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)  # [nW*B, Mh, Mw, C]        # 将多窗口拼接回大的featureMap        shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp)  # [B, H', W', C]        # reverse cyclic shift        # 将移位的数据进行还原        if self.shift_size > 0:            x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))        else:            x = shifted_x        # 如果进行了padding操作,需要移出掉相应的pad        if pad_r > 0 or pad_b > 0:            # 把前面pad的数据移除掉            x = x[:, :H, :W, :].contiguous()        x = x.view(B, H * W, C)        # FFN        x = shortcut + self.drop_path(x)        x = x + self.drop_path(self.mlp(self.norm2(x)))        return xclass BasicLayer(nn.Module):    """    A basic Swin Transformer layer for one stage.    Args:        dim (int): Number of input channels.        depth (int): Number of blocks.        num_heads (int): Number of attention heads.        window_size (int): Local window size.        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True        drop (float, optional): Dropout rate. Default: 0.0        attn_drop (float, optional): Attention dropout rate. Default: 0.0        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0        norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm        downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.    """    def __init__(self, dim, depth, num_heads, window_size,                 mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0.,                 drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):        super().__init__()        self.dim = dim        self.depth = depth        self.window_size = window_size        self.use_checkpoint = use_checkpoint        self.shift_size = window_size // 2  # 表示向右和向下偏移的窗口大小   即窗口大小除以2,然后向下取整        # build blocks        self.blocks = nn.ModuleList([            SwinTransformerBlock(                dim=dim,                num_heads=num_heads,                window_size=window_size,                shift_size=0 if (i % 2 == 0) else self.shift_size,   # 通过判断shift_size是否等于0,来决定是使用W-MSA与SW-MSA                mlp_ratio=mlp_ratio,                qkv_bias=qkv_bias,                drop=drop,                attn_drop=attn_drop,                drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,                norm_layer=norm_layer)            for i in range(depth)])        # patch merging layer    即:PatchMerging类        if downsample is not None:            self.downsample = downsample(dim=dim, norm_layer=norm_layer)        else:            self.downsample = None    def create_mask(self, x, H, W):        # calculate attention mask for SW-MSA        # 保证Hp和Wp是window_size的整数倍        Hp = int(np.ceil(H / self.window_size)) * self.window_size        Wp = int(np.ceil(W / self.window_size)) * self.window_size        # 拥有和feature map一样的通道排列顺序,方便后续window_partition        img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device)  # [1, Hp, Wp, 1]        h_slices = (slice(0, -self.window_size),                    slice(-self.window_size, -self.shift_size),                    slice(-self.shift_size, None))        w_slices = (slice(0, -self.window_size),                    slice(-self.window_size, -self.shift_size),                    slice(-self.shift_size, None))        cnt = 0        for h in h_slices:            for w in w_slices:                img_mask[:, h, w, :] = cnt                cnt += 1        # 将img_mask划分成一个一个窗口        mask_windows = window_partition(img_mask, self.window_size)  # [nW, Mh, Mw, 1]           # 输出的是按照指定的window_size划分成一个一个窗口的数据        mask_windows = mask_windows.view(-1, self.window_size * self.window_size)  # [nW, Mh*Mw]        attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)  # [nW, 1, Mh*Mw] - [nW, Mh*Mw, 1]  使用了广播机制        # [nW, Mh*Mw, Mh*Mw]        # 因为需要求得的是自身注意力机制,所以,所以相同的区域使用0表示,;不同的区域不等于0,填入-100,这样,在求得        attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))   # 即对于不等于0的位置,赋值为-100;否则为0        return attn_mask    def forward(self, x, H, W):        attn_mask = self.create_mask(x, H, W)  # [nW, Mh*Mw, Mh*Mw]   # 制作mask蒙版        for blk in self.blocks:            blk.H, blk.W = H, W            if not torch.jit.is_scripting() and self.use_checkpoint:                x = checkpoint.checkpoint(blk, x, attn_mask)            else:                x = blk(x, attn_mask)        if self.downsample is not None:            x = self.downsample(x, H, W)            H, W = (H + 1) // 2, (W + 1) // 2        return x, H, Wclass SwinTransformer(nn.Module):    r""" Swin Transformer        A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows`  -          https://arxiv.org/pdf/2103.14030    Args:        patch_size (int | tuple(int)): Patch size. Default: 4   表示通过Patch Partition层后,下采样几倍        in_chans (int): Number of input image channels. Default: 3        num_classes (int): Number of classes for classification head. Default: 1000        embed_dim (int): Patch embedding dimension. Default: 96        depths (tuple(int)): Depth of each Swin Transformer layer.        num_heads (tuple(int)): Number of attention heads in different layers.        window_size (int): Window size. Default: 7        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4        qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True        drop_rate (float): Dropout rate. Default: 0        attn_drop_rate (float): Attention dropout rate. Default: 0        drop_path_rate (float): Stochastic depth rate. Default: 0.1        norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.        patch_norm (bool): If True, add normalization after patch embedding. Default: True        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False    """    def __init__(self, patch_size=4,  # 表示通过Patch Partition层后,下采样几倍                 in_chans=3,           # 输入图像通道                 num_classes=1000,     # 类别数                 embed_dim=96,         # Patch partition层后的LinearEmbedding层映射后的维度,之后的几层都是该数的整数倍  分别是 C、2C、4C、8C                 depths=(2, 2, 6, 2),  # 表示每一个Stage模块内,Swin Transformer Block重复的次数                 num_heads=(3, 6, 12, 24),  # 表示每一个Stage模块内,Swin Transformer Block中采用的Multi-Head self-Attention的head的个数                 window_size=7,         # 表示W-MSA与SW-MSA所采用的window的大小                 mlp_ratio=4.,          # 表示MLP模块中,第一个全连接层增大的倍数                 qkv_bias=True,                 drop_rate=0.,          # 对应的PatchEmbed层后面的                 attn_drop_rate=0.,     # 对应于Multi-Head self-Attention模块中对应的dropRate                 drop_path_rate=0.1,    # 对应于每一个Swin-Transformer模块中采用的DropRate   其是慢慢的递增的,从0增长到drop_path_rate                 norm_layer=nn.LayerNorm,                 patch_norm=True,                 use_checkpoint=False, **kwargs):        super().__init__()        self.num_classes = num_classes        self.num_layers = len(depths)  # depths:表示重复的Swin Transoformer Block模块的次数  表示每一个Stage模块内,Swin Transformer Block重复的次数        self.embed_dim = embed_dim        self.patch_norm = patch_norm        # stage4输出特征矩阵的channels        self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))        self.mlp_ratio = mlp_ratio        # split image into non-overlapping patches   即将图片划分成一个个没有重叠的patch        self.patch_embed = PatchEmbed(            patch_size=patch_size, in_c=in_chans, embed_dim=embed_dim,            norm_layer=norm_layer if self.patch_norm else None)        self.pos_drop = nn.Dropout(p=drop_rate)   # PatchEmbed层后面的Dropout层        # stochastic depth        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule        # build layers        self.layers = nn.ModuleList()        for i_layer in range(self.num_layers):            # 注意这里构建的stage和论文图中有些差异            # 这里的stage不包含该stage的patch_merging层,包含的是下个stage的            layers = BasicLayer(dim=int(embed_dim * 2 ** i_layer),  # 传入特征矩阵的维度,即channel方向的深度                                depth=depths[i_layer],              # 表示当前stage中需要堆叠的多少Swin Transformer Block                                num_heads=num_heads[i_layer],       # 表示每一个Stage模块内,Swin Transformer Block中采用的Multi-Head self-Attention的head的个数                                window_size=window_size,            # 表示W-MSA与SW-MSA所采用的window的大小                                mlp_ratio=self.mlp_ratio,           # 表示MLP模块中,第一个全连接层增大的倍数                                qkv_bias=qkv_bias,                                drop=drop_rate,                     # 对应的PatchEmbed层后面的                                attn_drop=attn_drop_rate,           # 对应于Multi-Head self-Attention模块中对应的dropRate                                drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],     # 对应于每一个Swin-Transformer模块中采用的DropRate   其是慢慢的递增的,从0增长到drop_path_rate                                norm_layer=norm_layer,                                downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,   # 判断是否是第四个,因为第四个Stage是没有PatchMerging层的                                use_checkpoint=use_checkpoint)            self.layers.append(layers)        self.norm = norm_layer(self.num_features)        self.avgpool = nn.AdaptiveAvgPool1d(1)   # 自适应的全局平均池化        self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()        self.apply(self._init_weights)    def _init_weights(self, m):        if isinstance(m, nn.Linear):            nn.init.trunc_normal_(m.weight, std=.02)            if isinstance(m, nn.Linear) and m.bias is not None:                nn.init.constant_(m.bias, 0)        elif isinstance(m, nn.LayerNorm):            nn.init.constant_(m.bias, 0)            nn.init.constant_(m.weight, 1.0)    def forward(self, x):        # x: [B, L, C]        x, H, W = self.patch_embed(x)  # 对图像下采样4倍        x = self.pos_drop(x)        # 依次传入各个stage中        for layer in self.layers:            x, H, W = layer(x, H, W)        x = self.norm(x)  # [B, L, C]        x = self.avgpool(x.transpose(1, 2))  # [B, C, 1]        x = torch.flatten(x, 1)        x = self.head(x)   # 经过全连接层,得到输出        return xdef swin_tiny_patch4_window7_224(num_classes: int = 1000, **kwargs):    # trained ImageNet-1K    # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth    model = SwinTransformer(in_chans=3,                            patch_size=4,                            window_size=7,                            embed_dim=96,                            depths=(2, 2, 6, 2),                            num_heads=(3, 6, 12, 24),                            num_classes=num_classes,                            **kwargs)    return modeldef swin_small_patch4_window7_224(num_classes: int = 1000, **kwargs):    # trained ImageNet-1K    # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_small_patch4_window7_224.pth    model = SwinTransformer(in_chans=3,                            patch_size=4,                            window_size=7,                            embed_dim=96,                            depths=(2, 2, 18, 2),                            num_heads=(3, 6, 12, 24),                            num_classes=num_classes,                            **kwargs)    return modeldef swin_base_patch4_window7_224(num_classes: int = 1000, **kwargs):    # trained ImageNet-1K    # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224.pth    model = SwinTransformer(in_chans=3,                            patch_size=4,                            window_size=7,                            embed_dim=128,                            depths=(2, 2, 18, 2),                            num_heads=(4, 8, 16, 32),                            num_classes=num_classes,                            **kwargs)    return modeldef swin_base_patch4_window12_384(num_classes: int = 1000, **kwargs):    # trained ImageNet-1K    # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384.pth    model = SwinTransformer(in_chans=3,                            patch_size=4,                            window_size=12,                            embed_dim=128,                            depths=(2, 2, 18, 2),                            num_heads=(4, 8, 16, 32),                            num_classes=num_classes,                            **kwargs)    return modeldef swin_base_patch4_window7_224_in22k(num_classes: int = 21841, **kwargs):    # trained ImageNet-22K    # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22k.pth    model = SwinTransformer(in_chans=3,                            patch_size=4,                            window_size=7,                            embed_dim=128,                            depths=(2, 2, 18, 2),                            num_heads=(4, 8, 16, 32),                            num_classes=num_classes,                            **kwargs)    return modeldef swin_base_patch4_window12_384_in22k(num_classes: int = 21841, **kwargs):    # trained ImageNet-22K    # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384_22k.pth    model = SwinTransformer(in_chans=3,                            patch_size=4,                            window_size=12,                            embed_dim=128,                            depths=(2, 2, 18, 2),                            num_heads=(4, 8, 16, 32),                            num_classes=num_classes,                            **kwargs)    return modeldef swin_large_patch4_window7_224_in22k(num_classes: int = 21841, **kwargs):    # trained ImageNet-22K    # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window7_224_22k.pth    model = SwinTransformer(in_chans=3,                            patch_size=4,                            window_size=7,                            embed_dim=192,                            depths=(2, 2, 18, 2),                            num_heads=(6, 12, 24, 48),                            num_classes=num_classes,                            **kwargs)    return modeldef swin_large_patch4_window12_384_in22k(num_classes: int = 21841, **kwargs):    # trained ImageNet-22K    # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22k.pth    model = SwinTransformer(in_chans=3,                            patch_size=4,                            window_size=12,                            embed_dim=192,                            depths=(2, 2, 18, 2),                            num_heads=(6, 12, 24, 48),                            num_classes=num_classes,                            **kwargs)    return model
阅读本书更多章节>>>>

本文链接:https://www.kjpai.cn/gushi/2024-04-01/151967.html,文章来源:网络cs,作者:璐璐,版权归作者所有,如需转载请注明来源和作者,否则将追究法律责任!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

文章评论